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Summary 

The Lipari Szabo dynamical formalism is extended by setting the time constants of the Lorentzian terms 
to -l/e% and 1/(coil+ oN). This analysis is compared to the earlier proposed three-parameter (S~,S~,'c~) 
extended model free formalism with regard to the range of equivalence and the advantages of the sim- 

(Sf,Sn) and (Sf,SN) representations. Spectral density components are calculated plified two-parameter 2 2 2 2 

and compared to those obtained from the spectral density analysis formalism. Protein relaxation data, 
commonly analyzed in terms of the two-parameter (S2,%) representation, may correspond to a dynami- 
cally heterogeneous behaviour that is more appropriately represented in terms of a fast limit order 
parameter and a second, lower frequency order parameter. 

Introduction 

Dynamical analyses of protein ~SN relaxation data have 
most commonly followed the 'model free' formalism 
(Lipari and Szabo, 1982), for which the original two- 
parameter (S2,Ze) set has been extended by either a chemi- 
cal exchange term Aex (Kay et al., 1989) or an additional 
nanosecond order parameter S~ with the corresponding 
effective correlation time "c~ (Clore et al., 1990a), as war- 
ranted. Although this formalism has proven highly suc- 
cessful at fitting protein data for the standard heteronu- 
clear T~, T 2 and NOE experiments, concerns have been 
raised as to the physical significance of the derived para- 
meters, particularly for the time constants % and % As 
these relaxation experiments sample the spectral density 
function at only the frequencies 0, CON, CO~--CON, COn and 
con+ CON, a larger set of relaxation experiments has been 
proposed (Peng and Wagner, 1992a) to provide additional 
experimental constraints so as to obtain a set of linear 
equations relating the experimental relaxation measure- 
ments to the individual spectral density components. 
Unfortunately, given the accuracy commonly accessible 
for protein relaxation studies, the J(coH) and J(coH-coy) 
components are generally not well determined (Peng and 
Wagner, 1992b). To circumvent this problem, a reduced 
spectral density component set has been suggested (Ishi- 

ma and Nagayama, 1995) utilizing only J(0), J(CON) and 
J(COH+CON) on the assumption that the J(oN-ON), J(COn) 
and J(con + CON) components are approximately equal. This 
analysis yields a set of three linear equations relating the 
heteronuclear T1, T2 and NOE (or cross-relaxation rate 
RN) values to the spectral density components. 

1/T 1 : d2[3J(coy) + 7J(con+ CON) ] + C2J(CON) (1) 

I]T 2 = 0.5d 2 [4J(0) + 3J(CON) + 13J(co n + raN) ] 

+ C 2 [3J(CON) + 4J(0)] / 6 
(2) 

RN : d 2 [5J(COH +CON)] (3) 

NOE = 1 + TI(TH/q,N)RN (4) 

For these equations d2= 0.17~'~h2 < r~ 3 > 2 with rHN = 1.02 
A and c2= (2/15)o~ (or,- ~• with ~ ~• ppm. 

Methods 

The 2 2 (Sf,Ss,zs) extended dynamical formalism (Clore et 
al., 1990a) is based on a correlation function of internal 
motion: 

Ct(t) = S 2 + Afe -~ar + As e -tG (5) 
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with $2+ Af+A~= 1. On the assumption of independent 
axially symmetric internal motions separated by approxi- 
mately an order of magnitude in time constants, the re- 
sultant spectral density function is obtained: 

J(coi) = 2/5 [S 2 S~ "r + (coizo) 2) + (1 - Sra)%/(1 + (coi'cf,) 2) 

+ s2(1 - s ~ ) ~ , / ( 1  + (co~%,)~)1 (6) 

in which z~ is the molecular correlation time, 1/'c~,= 1/,c+ 
I/% and 1/%= 1/g~+ 1/'l:f. As the available relaxation data 
is standardly drawn from the three heteronuclear T~, T 2 
and NOE experiments, this four-parameter equation is 
further simplified to the common form by the assumption 
of an arbitrarily fast % with the resultant elimination of 
the second term. 

In the (S2,S2,~) representation, S 2 serves as a scale 
factor for the spectral density components. As a result, 
the derived T i T  2 and NOE values are independent of S} 
as they depend only on the ratio of J values. As shown in 
Fig. 1, S 2 and z~ span a wide range of Ta/T 2 and NOE 
values. This figure illustrates a one-to-one mapping of 
($2,$2,'t~) onto T 1, W 2 and NOE for this range of values. 
Within the assumption of an average J(COH) value, the 
spectral density values obtained from the 2 2 (Sf,S~,z~) values 
must satisfy the same set of linear equations, i.e., Eqs. 
1 3. Hence, the J(0), J(mN) and J(COH + 0~.) obtained from 
the 2 2 (Sr,S~,z~) values need to be identical to those derived 
via the reduced spectral density analysis formalism. Simi- 
larly, any other representation of the spectral density 
function that exhibits analogous mapping characteristics 
must necessarily predict the same values of J(0), J(mN) 
and J(mH+CON) for a given set of relaxation data. It 
should be noted that this characteristic of prediction of 
the spectral density components is independent of the 
assumption of isotropic molecular tumbling. 

One clear advantage offered by the model free forma- 
lisms when compared to the spectral density analysis 
formalisms is in providing a basis for partitioning the 
relaxation contributions of the internal motion. Given 
accurate modeling of the overall molecular tumbling, any 
model free representation with suitable mapping charac- 
teristics will exactly partition the overall and internal 
correlation contributions if the internal motional compo- 
nents decay rapidly compared to those due to molecular 
tumbling. 

A potential limitation of dynamical representation in 
terms of the (S~,'c~) pair is the degree of their functional 
interdependence in the operational fitting of experimental 
data. For much of the frequency domain represented in 
Fig. 1, the approximate orthogonality of the T1/T 2 and 
NOE contours ensures that with satisfactory data the Ss 2 
and "t~ parameters can be estimated reliably. However, for 
"c~ values smaller than 1/co H the mapping becomes less 
robust as a result of the fact that the T i T  2 and NOE 
contours converge in parallel toward 2_ S s - 0  at z~=0. 
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An alternative to the dynamical representation in terms 
of two order parameters and a single time constant of 
internal motion is the representation in terms of three 
order parameters: 

J(coi) = 2/SS~ [$2~ S~ "co / (1 + (coi'l~c) 2) -1- (l  - S2a)'ra / (1 q- (coi~a) 2) 

+ $2(1 - S2)Zb/(1 + (coi'I~b)2)] (7) 

where ga < % < % and ~ and ~'b are defined a priori. Under 
analogous assumptions to those used for Eq. 6, such a 
spectral density function can be interpreted in terms of ex- 
ponential internal correlation components with time con- 
stants 1/% and 1/% equal to l/~ a -  1/% and 1/'C b -  1/%, re- 
spectively. In addition to the comparatively more straight- 
forward physical interpretation of a pure order parameter 
representation, such a spectral density function directly 
provides for separate two-parameter representations. As 
demonstrated below for the case of human interleukin 1 ]3, 
the relaxation data from the large majority of ~5N reson- 
ances which required the three-parameter 2 2 (Sf,Ss,zs) repre- 
sentation in the original analysis (Clore et al., 1990b) can 
be readily accommodated by simpler two-parameter dy- 
namical representations. 

As the time constants g~ and Zu must be defined a 
priori, the determination of an optimal choice for these 
parameters is central to this formalism. As is clear from 
consideration of Fig. 1, the time constants selected should 
provide as large of a domain as possible in which the 
observed relaxation values can be exactly represented. 
Furthermore, as the dynamical behavior is to be charac- 
terized in terms of order parameters, the selection of time 
constants should maximize the sensitivity of the derived 
order parameters to the input relaxation data. As an 
illustration, consider the high-frequency Lorentzian term 
(1-82a)%/(1  +(coiga) 2) sampled at (,0H --}- (I) N. Since the in- 
ternal spectral density contribution is directly proportio- 
nal to the order parameter factor, the maximal sensitivity 
to that order parameter is obtained when "Ca/(1 + (CO&)2) 
is at a maximum, that is to say when %= 1/(COH+CON). A 
similar argument yields %=-1/co N. That such a parame- 
terization should be robust in terms of the range of relax- 
ation data that can be exactly represented is qualitatively 
illustrated in Fig. 1. For the frequency range displayed in 
the figure, T i T  2 is relatively insensitive to the value of 'q,  
while at the extremes of the figure ('cs= 1/(9 H and %= 
-1/c0N) the dependency of NOE on S 2 is markedly differ- 
ent. Hence, approximate orthogonality can be anticipated 
over a wide range of relaxation values. As a result, one 
obtains an isotropic spectral density function of the 
form: 

J(co0 = 2/5 S t [Sau S 2 "t:/(1 + (coi%) 2) + 

(1 - S~ ) gH' / (1 + (COi~H.) 2) q- 82(1 - S 2)gN / (1 + (COiZN)2)] (8) 

in which "OH,= 1/(COH+ CON) and "~N=--I/CON . 
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Fig. 1. Contour plot of the functional dependence of the ISN TJT 2 (~horizontal) and NOE &circular) values on S~ and zs for the (S~,S~,z~) 
formalism of Eq. 5, for which these relaxation parameters are independent of S~. An isotropic correlation time of 8.30 ns for a 14.1 T field is 
assumed. The % values (ns) are plotted according to a logarithmic scale. 

Results 

Comparison between the 2 2 2 (Sj, SH, S~) and reduced spectral 
density representations 

Since the spectral density values can be obtained via 
the extended model free analysis using the complete re- 
laxation equations, while the reduced spectral density 
analysis formalism is restricted to the approximate for- 
mulas 1-3, modest discrepancies can be anticipated. As 
the arguments regarding the mapping characteristics of 
the dynamical formalisms and the equivalence of the 
derived spectral density components apply rigorously only 
to the reduced equations, i.e., Eqs. 1-3, it is of consider- 
able importance to assess the degree of dissimilarity be- 
tween the predictions of the complete and reduced relax- 
ation equations. 

Within the assumption that the fast limit decay can be 
represented by the spectral density scale factor S~, the 
entire range of potential relaxation values can be repre- 
sented in terms of the ratios of spectral densities at the 
different Larmor frequencies and J(0). In order to com- 
pare the spectral density estimates obtained from the 
complete relaxation equations to those from Eqs. 1-3, the 
various J values were calculated as a function of both S 2 
and S~ from 0.0 to 1.0, assuming the parameters of the 
interleukin 113 relaxation study ('L=8.30 ns, 14.1 T) 
(Clore et al., 1990b) and using the complete relaxation 
equations. The corresponding array of relaxation values 
was then used to determine the corresponding spectral 

density values according to Eqs. 1-3. Throughout the en- 
tire range of relaxation values represented by the (Sf,S N ,2  2 
S~) formalism, the discrepancy for J(0) / J((o~) determined 
via the complete relaxation equations versus via Eqs. 1-3 
never exceeded 3.0%. Analogous calculations for J(c%)/ 
J(0) H + (o~) and J(0) / J((OH + o~) yielded discrepancies rang- 
ing from 6% when S~=S~=I  up to 9 and 11%, respec- 
tively, at smaller TIT2 values. 

The larger discrepancies for calculations involving 
J((OH+c%) reflect the limitations of the assumption of 
equal spectral densities at c%, oH + coy and (% - co N. Since 
the sensitivity to frequencies around co n lies primarily in 
the heteronuclear cross-relaxation rate, the complete 
relaxation equations can be used to define J((o~,)= 1/5 
[6J((oH + coN) - J((o~ - (ON)]- The corresponding calculations 

2 2 of J((ON) / J((OH') and J(0) / J((o~.) at SH = SN = 1 have dis- 
crepancies between the results from the extended dynam- 
ical formalism and the reduced spectral density analysis 
of only 0.28 and 0.04%, respectively. Larger discrepancies 
occur again at smaller values of T1/T2, due to the in- 
creased failure of the J((oH.) approximation for Eq. 1, 
giving rise to distortions not only in l/T1 but indirectly in 
the NOE value as well. 

As the discrepancies arising from the J((oH,) approxima- 
tion are quite modest compared to the one to two orders 
of magnitude covered by the ratios of the spectral den- 
sities, the relaxation values retain an essentially linear 
relationship with the spectral density components based 
on the complete relaxation equations, as illustrated in 
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Fig. 2. Note that J(CON)/J(COI4+CON) depends only on 
1/ (NOE- 1), as predicted from Eqs. 1-3. 

Being based on the complete relaxation equations, the 
extended model free dynamical analysis can provide a 
somewhat more reliable estimate of the characteristic 
spectral density components than those obtained from a 
reduced spectral density analysis. Far more importantly, 
as noted earlier, the extended model free dynamical ana- 
lysis provides a clear basis for the interpretation of the 
spectral densities in terms of internal motions. These 
benefits will apply to any ~SN nucleus for which the TIlT 2 
and NOE values (with S~ < 1.0) lie within the boundaries 
illustrated in Fig. 2 (appropriately corrected for field 
strength and molecular correlation time). The relaxation 
values for the 32 residues of interleukin 113, utilizing the 

2 2 (Sf,S~,z~) formalism (Clore et al., 1990b), are plotted in 
Fig. 2C. 

Although the preceding calculations ensure the effec- 
tively linear contour lines for the spectral density values 
in Fig. 2, more unexpected are the analytically linear 
boundaries defined by the Z=--I/CO N and I/(COH+CON) 

curves. Indeed, all values of the internal dynamical time 
constant predict a linear ray extending from the point 
defined by the rigid limit values for T / T  2 (= R2/R0 and 
NOE. Hence, the ratio of the experimental deviation in 
T~/T 2 to that of the NOE is independent of the correspon- 
ding order parameter. Cast more practically, the S~ de- 
pendence of TI/T 2 is proportionate to that of the NOE. 
Note that: 

J(COi)R - J(COi) = S~ (1 - S~) 

[%/(1 + coizo) 2 + %/(1 + cofc~,) 2] (9) 

Disregarding the various magnetic coupling factors and 
denoting J(COH + CON) as J+ and J(COH- CON) as J-, 

R2R/R~R - R 2 / R ~  (R2R RI - RIRR2)/RIR RL 

N O E R - N O E  (6J~ - J~)/Rt,a - (6J+ - J-)/R~ 

(10) 
R2R (Rm - R,) - Rtp ̀ (RR,a - R2) 

R m [6(J~ - J+) - ( JR - J - ) ] -  (RIR - Rt)(6J~ - JR) 

As each term of the numerator and denominator contains 
the factor (1 -S~), the ratio is independent of this order 
parameter. Furthermore, this ratio decreases monotoni- 
cally with decreasing z s. A direct corollary of this analysis 
is that the functional mapping between the extended 
model free parameters and the corresponding relaxation 
values is unique over the entire range of the model. 

Relaxation analysis via the (Sf, S2n), (S/,S~) and 
2 2 2 ( S~, SH, St;) representations 
Given the measurements and estimated experimental 

uncertainties of the relaxation parameters, the optimal 
analysis utilizes the minimum number of dynamical para- 
meters capable of providing a reverse prediction of the 
data. Most commonly, the agreement between the experi- 
mental data and a given dynamical parameterization is 
assessed via residuals of the form given in Eq. 11: 

A A 9 

F 2 = (I/T~- 1/T~)~/o~ + (1/T 2- 1/T2)2/(~ 
2 + 

(11) 

where q denotes the heteronuclear NOE parameter, ^ 
denotes the reverse predicted parameters and r~l, 62 and 
0 n are the estimated uncertainties of the experimental 
data. For the relaxation data from each nucleus, a paral- 
lel set of grid searches was conducted in order to deter- 
mine the optimal parameters for each dynamical model. 
Initial assessment of the model selection for the one- (i.e. 
S~) and two- (i.e. 2 2 (Sf,SH) and (S~,S~)) parameter models 

0 -1 -2 0 -1 -2 0 -1 -2 

NOE 
Fig. 2. Contour  plot of the spectral density functions J(oy) / J({0 H + ON) (A), J(0) [ J(ON) (B) and J(0) / J(m H + toN) (C) as a function of T I T  2 and NOE 
(zc=8.30ns, 14 .1T)us ing the  2 2 2 (Sf,SH,S N) formahsm of Eq. 6. Boundaries mark the limit of relaxation values reproduced by this formalism. A grid 
density of 0.001 for the order parameters was used to assign spectral density values to a grid density of 0.0166 in TI/T 2 and 0.01 in NOE. (C) 
indicates the experimental T / T  2 and NOE values for the 32 residues of human interleukin 1 [3 fitted to the (S~,S~,z~) formalism (Clore et al., 1990b). 
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TABLE 1 
ORDER PARAMETERS AND INTERNAL SPECTRAL DENSITY VALUES FOR 15N NUCLEI OF HUMAN INTERLEUKIN 113 

Residue S~ a S~ S~ S~ S 2 S 2 S~ S~ U 2 -- e l  b J,(0) ~ J~(c%) J~(c% + c%) 

Set s 0.788 0.910 0.719 0.728 0.732 66 (27) 34 (13) 2.0 (1,2) 
Ser 17 0.854 0.828 0.707 0.708 0.738 154 (31) 77 (15) 2.0 (1.6) 
Gly 2z 0.666 0.780 0.534 0,277 0.312 0.328 270 (20) 144 (10) 11,8 (0.7) 
Leu 26 0.806 0.932 0.754 0.757 0.763 54 (27) 27 (13) 1.0 (1.4) 
Gln 32 0.724 0.900 0,660 0.667 0.670 56 (25) 31 (12) 3.4 (1.2) 
Gly ~3 0.742 0,552 0.412 0.422 0.480 345 (31) 173 (15) 4.8 (l.4) 
Gln 34 0.794 0,696 0.552 0,551 0.603 253 (29) 126 (14) 3.2 (1.7) 
Asp 35 0.734 0.784 0.580 0.597 0.610 152 (28) 78 (14) 3.9 (1.2) 
Met 36 0.780 0.896 0.702 0.711 0.717 77 (29) 40 (14) 2.I (1.2) 
Phe 46 0.834 0.938 0.785 0.789 0.795 51 (26) 26 (13) 0.9 (1.4) 
Va147 0.776 0.890 0.693 0.693 0.710 88 (29) 44 (14) 1.2 (1.5) 
Gln 48 0.808 0.942 0.766 0.771 0.773 35 (23) 19 (11) 2.3 (1.3) 
Gly ~9 0.802 0.900 0.908 0.655 0.665 0.669 79 (26) 44 (13) 5.6 (1.2) 
Glu ~~ 0.708 0.814 0.558 0.322 0.357 0.376 284 (24) 149 (12) 11.0 (0.8) 
Glu 5t 0.690 0.780 0.544 0.293 0.329 0.345 275 (25) 146 (12) 12.1 (0.8) 
Ser 52 0.690 0.764 0.386 0.204 0.249 0.272 358 (21) 188 (11) 13.9 (0.9) 
Asp s4 0.674 0.904 0.898 0.547 0.555 0.560 73 (24) 40 (12) 4.6 (1.0) 
Lys 55 0.732 0.874 0.641 0.646 0,660 95 (31) 48 (15) 1.4 (1.3) 
Ile 56 0.808 0.948 0,763 0.763 0.763 9 (26) 7 (13) 2.3 (1.2) 
Cys 7~ 0,754 0,836 0.639 0.654 0.660 105 (31) 56 (15) 4.7 (1.2) 
Lys 88 0.846 0.886 0.715 0.722 0.725 54 (25) 31 (12) 4,7 (1.2) 
Lys 93 0.814 0.904 0.737 0,744 0.752 77 (29) 39 (14) 1.5 (1.3) 
Lys 94 0.814 0.906 0.718 0,721 0.723 32 (23) 20 (11) 4.0 (1.2) 
Met 95 0.742 0.866 0.646 0.657 0.664 93 (26) 48 (13) 2.7 (1.2) 
Glu 96 0.798 0.878 0.701 0.689 0.720 93 (28) 48 (14) 2.2 (1.0) 
Ile ~~ 0.768 0.735 0.738 0.740 29 (22) 15 (11) 1.3 (1,1) 
Lys ~~ 0.792 0.930 0.711 0.715 0.717 37 (23) 20 (11) 2.5 (1.2) 
Leu ~1~ 0.816 0.928 0.758 0.764 0.770 59 (25) 30 (12) 1.2 (1.4) 
Ala t2v 0.738 0.926 0.690 0.696 0.697 41 (24) 23 (12) 2.7 (1.1) 
Met ~3~ 0.832 0.944 0.786 0.791 0.796 46 (25) 23 (13) 1.0 (1.4) 
Met ~3~ 0.774 0.838 0.658 0.672 0.678 101 (28) 55 (14) 5.5 (1.3) 
Ser 153 0.558 0.422 0.456 0.107 0.128 0.136 172 (13) 105 (6) 20.7 (1.0) 

a Optimal order parameter values utilizing (S~,$2), (S~,S 2) 2 2 2 or (Sf,SH,SN) representations as well as the aggregate order parameters as determined 
by the 2 2 2 and ; 2 (Sr,SH,SN) (Sf,S~,~C~) formalisms. The average experimental uncertainties are 1.9, 2.5, 3.1, 2.8 and 2.8%, respectively. 

b The difference in relaxation rates normalized to R2-R~ for rigid molecular tumbling. 
~ Internal spectral density function J~(o~) = J(co~)- 2/5(S r2 SH2 SN)'~o/2 (1 + 0~2"c~)2 in ps/rad. Uncertainties were assessed via Monte Carlo simulations, 

filtering the synthetic relaxation values for those contained within the boundaries of Fig. 2. 

was based on  the co r r e spond ing  Z; cond i t iona l  probabi l -  

ities for two and  one degrees of  f reedom v, respectively. 

As the th ree -paramete r  extended formal i sms  yield exact  

representa t ions  wi th in  the d o m a i n  i l lustrated in Fig. 2, 

a s s ignmen t  to a s impler  mode l  was made  if the cor respon-  

d ing cond i t iona l  p robabi l i ty  exceeded 5%. A l t h o u g h  the 

(Sf,SH) a n d  selection between the two-pa ramete r  models  2 2 
2 2 (Sf,Sy) can  s t ra ight forwardly  be m a d e  based o n  the F 2 or 

the co r r e spond ing  cond i t iona l  probabil i t ies ,  sat isfactory 

c o m p a r i s o n  be tween  the one-  an d  two-paramete r  models  

is more  subtle a n d  several protocols  have been  p roposed  

(e.g. Far row et al., 1994; M a n d e l  et al., 1995). 

Each  mode l  represents  a G a u s s i a n  d i s t r ibu t ion  (~ = ex- 
pe r imenta l  unce r t a in ty )  o f  re laxat ion  values  centered on  

those predicted by the op t imal  mode l  parameters .  The  
best mode l  is considered to be the one  for which the 

observed exper imenta l  values  are assessed to be mos t  
p robable  for the ma jo r i ty  of  the po in ts  wi th in  the mode l  

d is t r ibut ion .  A M o n t e  Car lo  assessment  can  be m a d e  by 
repeatedly selecting a po in t  f rom each mode l  d i s t r ibu t ion  

a n d  calcula t ing the co r r e spond ing  cond i t iona l  p robabi l -  

ities for the observed exper imenta l  values. These results 

can be accurately  mode led  more  s imply by de t e rmin ing  

the cond i t iona l  probabi l i t ies  o f  (F~= 1 + 3) versus (F~=2 + 3) 

for the op t ima l  mode l  parameters .  This  protocol  predicts 

the selection of  the S~ mode l  whenever  F 2 (S~) is less t h a n  

2.0. The  one-  a n d  two-paramete r  models  form a b o u n d -  

ary  ex tending  up  to the po in t  for which b o t h  models  

reach their  P0.0s value (i.e., F2v_~ = 3.84 and  F~=2= 5.99). 
Selection be tween the S 2 and  (S~,Aex) mode ls  is 

hand led  differently, as it depends  only  on  T1/T 2 and  hence 
has only  one and  zero degrees of  freedom, respectively. 

The  (S~, Aex) mode l  was assigned if the cond i t iona l  p rob-  
abil i ty for F 2 (T~/T2) was less t h a n  0.1 and  the T1/T2 value 

lay in the uppe r  ha l f  o f  the d is t r ibut ion .  N o t e  that  OT~/T 2 --- 

sqrt  ( (~]T1)2+ (%/T2)2). 
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This analysis was applied to human interleukin 1 [3, for 
which the initial relaxation study (Clore et al., 1990b) 
concluded that of the 128 residues analysed, 32 required 
the extended (S~,S~,~) formalism, 42 required the extended 
(S2,Aex) formalism, and only 54 exhibited dynamics that 
could be explained by the original Lipari-Szabo S 2 model. 
The individual T~ and T2 values had an average experi- 
mental uncertainty of 3.3%, while an uncertainty of 0.1 
~yas reported for the NOE values. The model selection 
p'rotocol described above yielded 92 residues fit to the 
sinapler representations (59 with ($2), 9 with 2 2 (Sf,SH) and 
24 with ~ 2 (S~,SN)). It should be noted that, although calcu- 

2 2 lations for an (SH,SN) parameterization were also in- 
cluded, in all cases the conditional probability was sub- 
stantially lower than for the other parameterizations and 
indeed, only for five nuclei P>0.05 was obtained. The 
dynamical parameterization assignments, their order 
parameters and associated uncertainties (Palmer et al., 
1991) are given in Table 1 for the 32 residues originally 
assigned to the (S~,S~,z~) formalism. Note that only seven 
residues (Gly 22, Gly 49, Glu 5~ Glu sl, Ser 52, Asp 54 and Ser 153) 
require the three-parameter representation. 

Using a grid search density of 0.002 for the order 
parameters and a multiplicative scaling factor of 1.005 for 
% the parameters J(0) ,  J(OIN) and J(o) H + (ON) for these 32 
residues were calculated from the complete relaxation 
equations using both the 2 2 2 2 2 (Sf,SH,SN) and (Sr,S~,Zs) forma- 
lisms. Disregarding the NOE value of 0.82 for Glu 96, 
which places this residue slightly outside the mapped 
domain of Fig. 2, for the 32 residues the average differ- 
ences obtained from the two formalisms for the three 
spectral density values were 0.06, 0.24 and 2.5%, respect- 
ively. The average residual F 2 w a s  0.0004 for both forma- 
lisms, thus demonstrating the explicit equivalence of the 

2 2 2 2 2 (Sf,SH,SN) and (Sf,S~,~3 formalisms for the spectral density 
analysis of this experimental data. 

As the term 2/5(S~ 2 2 Su Sy)'~o / (1 2 2 +mi "co) represents the 
spectral density contribution arising from the isotropic 
molecular rotational diffusion, it can be subtracted from 

the spectral density values to yield an estimate of the 
contribution due to internal mobility, as given in Table 1. 
Both internal spectral density components Ji(0) and Ji(my) 
correlate fairly well with the deviation of TiT2 from the 
single exponential limit. Likewise, variations in Ji(mH + my) 
tend to follow the deviation of the NOE value from the 
single exponential limit, although the noise level is in- 
creased substantially at the higher frequency. It should be 
noted that the average uncertainty for the J~(0) values is 
only 1 2% of the average J(0) value, reflecting the domi- 
nant contribution of the molecular tumbling to this dy- 
namical term. As these calculations are essentially exact 
within the assumptions of the dynamical formalism, the 
uncertainties for the Ji values simply reflect the average 
experimental uncertainties and hence define an upper 
bound of reliability to which these internal dynamical 
parameters can be ascertained. 

In contrast to the J values, the estimates of the internal 
spectral density components are formalism independent 
only if the correlation decay due to internal motion is 
essentially complete before effective onset of the decay 
due to molecular tumbling. Otherwise, S 2 S~ need not 
exactly equal Sf 2 S 2 S 2. The degree of mismatch between 
the corresponding S~S~ and S~S 2S 2 values primarily 
reflects the dissimilarity between % and "c N and their re- 
spective order parameters. Both extended models yield 
quite similar predictions for both Ji(olN) and Ji(o) H + (-ON). 
However, as the % values are generally less than z N, the 
($2,$2,~) formalism predicts smaller Ji(0) values, in some 
cases up to 40% smaller than those given in Table 1. 

An estimate for the aggregate order parameter can be 
readily obtained. If the internal relaxation is independent 
of and more rapid than that due to the overall molecular 
tumbling, the relaxation rates can be represented as fol- 
lows: 

2 R1 = Rl i  + S c R1R (12) 

2 
R 2 = R2i + S c R2R (13) 

TABLE 2 

I N T E R N A L  SPECTRAL  DENSITY VALUES F OR  15N N U C L E I  OF I N T E R L E U K I N  113 VIA THE (S2,z,) A N D  (S~,S 2) F O R M A L I S M S  

Residue Ji(0) Ji(0)N) Ji(m H +mN ) 

(S2,,co) 2 2 (s~,ssas) (s~,s~) (s2,~O (s~,ss,~s)2 2 (s~,s 2) (s~,z0) (s~,s~ ~,~s) (s~,s~) 

Gln 32 4.6 31.9 9.1 a 4.6 28.8 8.9 4.5 3.4 4.5 
Gin 38 3.0 11.7 5.6 3.0 11.2 5.5 2.9 2.5 2.8 
Gln 48 3.0 20.0 5.9 3.0 18.1 5.8 3.0 2.2 2.9 
Ile s6 2.7 6.8 5.0 2.7 6.6 4.9 2.6 2.4 2.5 
Lys 88 6.1 3 1.2 11.4 6.1 29.0 11.3 5.8 4.6 5.7 
Asn 89 3.7 7.7 6.8 3.7 7.6 6.7 3.7 3.4 3.4 
Lys 92 4.9 6.4 8.7 4.9 6.3 8.6 4.6 4.5 4.3 
Lys 94 4.8 19.8 9.0 4.8 1 8.8 8.9 4.7 3.9 4.5 
Lys t~ 3.4 21 .t 6.5 3.4 19.3 6.4 3.4 2.5 3.3 
Ala 127 3.6 23.4 7.1 3.6 21.3 7.0 3.5 2.7 3.5 

Internal spectral density components  in ps/rad as calculated by the 2 2 2 2 2 (S ,'ce), (Sf,S~,~s) and (Sr,SH) formalisms, respectively. 
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TABLE 3 
OBSERVED AND PREDICTED T I AND NOE VALUES FOR 15N NUCLEI OF CALBINDIN Dgk 

Residue "r~ ~ 1/T t NOE 
2 2 b 2 2 2 b 2 2 b (Sr,S ~,'r~) Exp. (Sr,S.,SN) (Sr,S ~,z~) Exp. 2 2 2 b (Sr,SmSN) 

Ser 2 48.1 1.888 1.95 1.871 0.632 0.596 0.608 
G l u  4 35.7 1.984 2.00 1.986 0.682 0.694 0.700 
GIu 5 43.9 2.056 2.13 2.048 0.698 0.662 0.686 
Leu  4~ 53.6 2.000 2.08 1.978 0.640 0.606 0.616 
Lys 41 1454.2 1.853 1.89 1.826 0.583 0.548 0.550 
Gly 42 1657.4 1.696 1.75 1.638 0.415 0.363 0.341 
Gly 43 1816.1 1.754 1.81 1.695 0.488 0.434 0.428 
Ser  44 2686.9 1.622 1.62 1.589 0.545 0.698 0.500 
Thr 45 44.5 1.897 1.95 1.880 0.648 0.598 0.627 
Gln 6v 27.1 2.181 2.23 2.175 0.750 0.715 0.746 
Lys 72 55.1 1.995 2.06 1.985 0.656 0.621 0.639 
Ile 73 61.1 1.970 2.02 1.946 0.606 0.568 0.577 
Ser TM 1723.1 1.931 1.98 1.890 0.570 0.524 0.529 

Spectral density time constant obtained from model free analysis, as reported earlier (Kordel et al., 1992). 
b Predicted relaxation behavior at 14.1 T based on the order parameters and time constants obtained from the T~, T2 and NOE 

utilizing both published (Clore et ai., 1990a) and proposed extended model free analyses. 
data at 11.74 T, 

where R i represents the internal mobility contribution to 
relaxation and R R represents the relaxation predicted for 
rigid molecular tumbling. Hence: 

R 2 - R, = (R2i-Rli  ) + S 2 (R2R-Rm) (14) 

Given the typical correlation times o f  small proteins near 
the low-frequency side o f  the Larmor  frequencies, the 
term (R2i- Rli ) can be generally expected to be substan- 
tially smaller than the S~(R2R-Rm) term. The ratio 
(R 2 - R I ) / ( R 2 R -  RIR ) is included in Table 1 for these 32 
residues of  interleukin 113. As expected, this ratio is sys- 
tematically larger than that predicted from the extended 
dynamical models. The S~ S~ values are generally more 
similar, reflecting the smaller predicted internal spectral 
density components  J~(0) discussed above. It should be 
noted that in this analysis only the independence of  the 
internal and molecular motions is assumed. Anisotropy in 
molecular tumbling can be readily incorporated into the 
RR calculations using analysis in terms of  symmetrical or 
asymmetrical ellipsoids of  rotational diffusion (Dolle and 

Bluhm, 1989). 
When the original (S2,~e) formalism (Lipari and Szabo, 

1982) was applied to the interleukin 113 data in an analog- 
ous fashion using the model selection protocol described, 
66 nuclei were fitted to the Sf 2 formalism, while 11 re- 
quired the additional % term. The average residual F 2 for 
these 11 residues was 1.15 using the (S2,'re) formalism and 

(Sf,SH) representation. There only 0.80 when using the 2 2 
was a rather uniform 30% differential in the values o f  the 
individual residuals, with the 2 2 (Sf,S~) representation being 
more favorable in every case for which F 2 was greater 
than 0.2. 

An  alternate means o f  assessing how well the (S2,'~e) 
and (S~,S~) represent the relaxation data is by comparison 

of  the corresponding predicted internal spectral density 
components. Of  the 11 residues fitted to the (S2,ze) for- 
malism, 10 can be exactly fitted by the (S~,S~,~) formal- 
ism. Since both two-parameter representations are limit- 
ing cases o f  this three-parameter formalism and in these 
cases decay of  the correlations due to internal mot ion is 
expected to be substantially more rapid than that due to 
molecular tumbling, the Ji  values obtained from the 
(S~,S~,zs) formalism should provide a useful reference. 
Table 2 lists the predicted internal spectral density com- 
ponents. Since the ~e values are generally considerably 
smaller than zH,, as expected, the ($2,'c~) formalism cannot  
differentially affect the spectral density components  to a 
substantial degree. Indeed, al though considerably more 
similar to the reference values, in most  cases the (Sf,S~)2 2 
formalism predicts a shallower variation in the Ji values. 
This reflects the fact that, except for Lys 92, the optimal "~, 
values are larger than ~n,. In fact, for the residues, having 
a z~. value near 1 ns, the earlier described model selection 

(Sf,SN) formalism preferentially. A1- analysis selected the 2 2 
though useful for contrasting the predictive behavior of  
the (S2,Ze) and 2 2 (Sf,SH) formalisms, the physical signifi- 
cance of  the specific J~ values listed in Table 2 should not 
be overinterpreted, since for none of  these residues was 
the three-parameter representation shown to be statistical- 
ly warranted. 

Insight into the potential physical significance o f  the 
(Sf,SH) formalism can superior modeling behavior of  the 2 2 

be gained upon consideration o f  the S 2 values. The aver- 
age S 2 value for the 66 residues fitted to the S 2 formalism 
is 0.837, while for the 11 residues requiring the "c~ term the 
average S 2 value is reduced to 0.758. When these same 11 

(Sr,SH) represen- residues were analyzed according to the 2 2 
tation, the average S 2 value was 0.820. These results 
strongly suggest that the motions giving rise to the % 
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dependence (primarily reflecting reduced N O E  values) are 
qualitatively distinct f rom those characterized by the 
simpler S 2 formalism. This conclusion is reinforced by the 
earlier noted failure of  the 2 2 (SH,SN) formalism, thus sug- 
gesting in general the necessity of  a separate fast limit 
order paramete r  (or, equivalently, a spectral density scale 
factor) in order to optimally characterize the dynamical  
behavior. 

Given the wide range of  relaxation values exactly rep- 
resented by the three-parameter  dynamical  formalisms, if 
the T I T  2 and N O E  contours  are approximately ortho- 
gonal, the uncertainties for the dynamical  parameters  will 
correspond closely to those of  the experimental  relaxation 
data. In contrast,  despite the uniqueness of  the mapping  
between the relaxation values and the dynamical  parame-  
ters, for regions in which the TilT 2 and N O E  contours  are 
approximately parallel the derived uncertainties for the 
dynamical  parameters  can be severely degraded. In addi- 
tion to the more  s tandard Monte  Carlo assessment of  the 
uncertainties in the dynamical  parameters  (Palmer et al., 
1991), as reported in Table 1, a grid search analysis can 
be conducted to determine the set of  dynamical  parame-  
ters yielding residuals within a 95% confidence range of 
the experimental  relaxation values (i.e., F 2 < 7.81 for three 
degrees of  freedom). 

For example, a 0.001 grid search on the 2 2 2 (Sf,SH,SN) or- 
der parameters  for Ile 56 (T1 = 792 ms, T 2 = 107 ms, N O E =  
0.70 (Clore et al., 1990b)) yields a global min imum at 
0.807, 0.951 and 0.992, respectively. Assuming the highly 
stringent experimental  uncertainties of  1% for T t and T 2 
and 0.01 for NOE,  the bounds  for order parameters  are 
S~ = (0.790,0.824), S2H ---- (0.940,0.963) and S 2 = (0.962,1.00). 
When the corresponding analysis of  Ile 56 is carried out 
with the 2 2 (Sf,Ss,'c~) formalism (grid scale factor for ~s = 
1.004), the global min imum occurs at (0.806,0.946,462 
ps), corresponding to that  originally reported. However, 
even with such stringent assumed experimental uncertain- 
ties, a second local min imum is obtained on the opposite 

side of  ~ = 1/On with very similar order parameters  (0.817, 
0.943,179 ps) and a residual o f  1.09. More  significantly, 
the set of  dynamical  parameters  with F 2 < 7.81 is continu- 
ous, with one branch running from (0.802,0.961,316 ps) 
to (0.807,0.919,808 ps) and the other extending to (1.00, 
0.758,26 ps). In this example the uncertainty ranges for 
the order parameters  from the 2 2 (Sf,Ss,~) formalism are 
nearly an order of  magnitude larger than those obtained 
using the 2 2 a (Sf,SH,SN) formalism. Hence, al though the pre- 
diction of  S 2 S~ remains robust, the values of  the individ- 
ual order parameters  are largely undetermined. 

Using the (S~,S~,S 2) formalism, all 32 residues of  Table 
1 exhibit uncertainty ranges of  uniform widths for each 
order parameter,  differing only for truncation at 1.0 as 
with S 2 for Ile 56. This better condit ioned behavior reflects 
the fact that for a wide range of  values the predicted 
N O E  can be varied approximately independently of  the 
T I T  2 values by compensat ing adjustments of  S 2 and S 2. 

Field-dependent analysis' using the ( S/,S2,S2N) formalism 
Since the time constants of  the proposed spectral den- 

sity function are defined in terms of  the La rmor  fre- 
quencies, if relaxation analysis is conducted independently 
at different field strengths the corresponding order para-  
meters can be anticipated to be field dependent.  However, 
this effect will in par t  be mitigated by the fact that the 
time constants are set to the max imum of  the Lorentzian 
curves and hence the predicted order parameters  are 
locally independent o f  frequency. In order to assess the 
practical utility of  the 2 2 2 (Sf,SH,SN) formalism in field-de- 
pendent studies, the relaxation data for Ca2+-loaded cal- 
bindin D9k (Kordel et al., 1992) were reanalyzed accord- 
ing to both the 2 2 2 (Sf,SH,S~) and (S{,S~,'cs) formalisms. In one 
of the comparat ively few extensive field-dependent protein 
15N relaxation studies, Chazin and co-workers reported 
T~, T 2 and N O E  values at 11.74 T as well as T~ and N O E  
values at 14.1 T. Since in the present analysis the interest 
is in the predictions of  the extended model free forma-  

TABLE 4 
SUMMARY OF RELAXATION ANALYSIS FOR 15N NUCLEI OF CALBINDIN Dgk 

Te a AT, (%) ANOE (%) 

<25ps 25<'r 100 ps >1 ns <25ps 25<'Ce<100 ps >1 ns 

S~(14.1 T) - S~(11.7 T) b 16.1 I4.8 10.6 6.8 11.5 34.8 (36.8) r 
$2(14.1 T)-S~(ll.7 T) 16.2 15.3 12.8 6.6 8.9 22.0 (23.3) 
Exp(14.1 T)-  Exp(11.7 T) 13.9 12.3 8.6 3.2 6.0 33.0 (25.5) 
S~(14.1 T)-Exp(14.1 T) d 2.8 2.9 2.4 4.0 5.8 13.8 (10.9) 
S~(14.1 T)-Exp(14.1 T) 2.8 3.6 4.8 3.8 3.0 13.0 (3.1) 
$2(14.1 T)-S~(14.1 T) 0.1 0.8 2.7 0.4 3.2 12.9 (13.8) 

a Nuclei divided into groups according to "c~, as reported earlier (Kordel et al., 1992). 
b Average field-dependent differences as predicted by extended model free formalisms S~ (Ctore et al., 1990a) and S 2 (proposed) and as experimen- 

tally determined (Kordel et al., 1992), 
Averages with the NOE value from Ser 44 excluded. The field-dependent change for this residue is more than 2.5-fold greater than for the 
remainder of the group, despite having similar T~ and T 2 values. 

e Rmsd as predicted by extended model free formalisms S 2 (Clore et al., 1990a) and S H (proposed) and as experimentally determined. 
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lisms rather than the statistically proper assignment of 
dynamical representations, all nuclei for which the relax- 
ation data at 11.74 T could be essentially exactly fit by 

2 2 2 2 2 both the (Sf~SH,SN) and formalisms (Sf,S~,'cs) were con- 
sidered. The derived dynamical parameters were then used 
to predict the relaxation data at 14.1 T. 

As 28 nuclei exhibited TIT2 values larger than that for 
the rigid limit predicted from the estimated 4.25 ns mol- 
ecular correlation time, these could not be accurately 
fitted by the 2 2 2 2 (Sf,SH,SN) and (Sf,S~,z~) formalisms. In the 
original manuscript (Kordel et al., 1992), these residues 
were analyzed for the presence of chemical exchange. 
Both formalisms adequately represented 41 of the 70 
nuclei for which complete data was available. The ter- 
minal Gln v5 was not satisfactorily represented by the 

2 2 2 (Sf,SH,SN) formalism. These 41 nuclei were further subdi- 
vided according to the value of ze (or %) determined in 
the original study. The 28 nuclei exhibiting "c e < 25 ps were 
presumed to be dominated by the Zc term of the spectral 
density function and thus relatively insensitive to the 
differences in the extended formalisms. The remainder of 
the nuclei (Table 3) were divided according to those hav- 
ing 25 < % < 100 ps (eight) and those assigned "~s values > 1 
ns (five). 

The statistical summary of the comparison between the 
predicted and observed relaxation values is given in Table 
4. As expected, the predicted T 1 and NOE values for the 
first set of nuclei were essentially indistinguishable for the 
two formalisms. However, these predictions overestimate 
the experimental Tt and NOE values by 2.8 and 3.9%, 

(Sf,Ss,~) formalism respectively. For the T~ values the 2 2 
provides a slightly better prediction for the second group 
of nuclei and an approximately twofold better fit for the 
third group, although it should be noted that only for the 
latter case do the differences between the predictions of 
the two formalisms approach the observed experimental 

(Sr,SH,SN) formalism provides uncertainty. In contrast, the 2 2 2 
a clearly superior prediction of the NOE for the second 
group of nuclei as well as for the third group if the anom- 
alous results of Ser 44 are discounted. 

In this analysis the data set at 11.74 T was used as the 
reference for both the derived order parameters and time 
constants. When instead the time constants for the 

2 2 2 (Sf,SH,SN) formalism are adjusted for the higher field 
strength, the agreement with the experimental results is 
improved modestly for the TI data, while the quality of 
the fit to the NOE values is closer to that obtained from 
the 2 2 (Sf,S~,z~) formalism. Although the present analysis is 
insufficient to rationalize the various differences in terms 
of weaknesses in the individual extended dynamical for- 
malisms or in terms of systematic experimental deviations, 
it does indicate that the frequency dependence of the time 

(Sf,S~,SN) formalism need not constants invoked by the 2 2 2 
preclude its utility for relaxation studies for the modest 
range of field strengths presently used. 

Conclusions 

A spectral density function in which the time constants 
are set to the inverse of the Larmor frequencies -co N and 
COIl + COy has been demonstrated to adequately represent 
the dynamical behavior of the great proportion of protein 
15N relaxation for nuclei characterized by internal motion 
that is more rapid than molecular tumbling. Indeed, in 
the large majority of such cases a simpler two-parameter 
representation is sufficient. Such a choice of time con- 
stants provides maximal sensitivity of the derived order 
parameters to the input relaxation data. This extended 
model free formalism was used to partition the contribu- 
tion to the spectral density function arising from internal 
motion, and the results were compared to the correspon- 
ding analysis using the (S~,S~,z~) extended model free 
formalism. The relatively high degree of uncertainty in 
the derived internal spectral components reflects the sub- 
stantial contribution of the molecular tumbling to the 
overall relaxation behavior. 

Comparison between the (S2,%) Lipari-Szabo model 
and the 2 2 (Sf,SH) representation argues for the general 
benefit of a fast limit order parameter (or, equivalently, 
a spectral density scale factor) in the dynamical formal- 
ism. Data previously interpreted in terms of a nonzero % 
time constant may be more effectively interpreted as 
indicating dynamics on two discrete time scales. 

The dynamical parameters obtained from the (S~,S~,S~) 
formalism have been applied to the field-dependent analy- 
sis of the calbindin D9k ~SN relaxation (Kordel et al., 
1992) using spectral density time constants in both a rid& 
dependent and field-independent fashion. Over the range 
of 11.74 and 14.1 T, the differences obtained from the 
two approaches are comparable and appear to be of 
similar quality to those obtained via the (S~,S~,zs) ex- 
tended formalism. 
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